• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

3D printing of PEEK-cHAp scaffold for medical bone implant

摘要The major drawback associated with PEEK implants is their biologically inert surface, which caused unsatisfactory cellular response and poor adhesion between the implants and surrounding soft tissues against proper bone growth. In this study, polyetheretherketone (PEEK) was incorporated with calcium hydroxyapatite (cHAp) to fabricate a PEEK-cHAp biocompos-ite, using the fused deposition modeling (FDM) method and a surface treatment strategy to create microporous architectures onto the filaments of PEEK lattice scaffold. Also, nanostructure and morphological tests of the PEEK-cHAp biocomposite were modeled and analyzed on the FDM-printed PEEK-cHAp biocomposite sample to evaluate its mechanical and thermal strengths as well as in vitro cytotoxicity via a scanning electron microscope (SEM). A technique was used innovatively to create and investigate the porous nanostructure of the PEEK with controlled pore size and distribution to promote cell penetration and biological integration of the PEEK-cHAp into the tissue. In vivo tests demonstrated that the surface-treated micropores facilitated the adhesion of newly regenerated soft tissues to form tight implant-tissue interfacial bonding between the cHAp and PEEK. The results of the cell culture depicted that PEEK-cHAp exhibited better cell proliferation attachment spreading and higher alkaline phosphatase activity than PEEK alone. Apatite islands formed on the PEEK-cHAp composite after immersion in simulated body fluid of Dulbecco's modified Eagle medium (DMEM) for 14 days and grew continuously with more or extended periods. The microstructure treatment of the crystallinity of PEEK was comparatively and significantly different from the PEEK-cHAp sample, indicating a better treatment of PEEK-cHAp. The in vitro results obtained from the PEEK-cHAp biocomposite material showed its biodegradability and performance suitability for bone implants. This study has potential applications in the field of biomedical engineering to strengthen the conceptual knowledge of FDM and medical implants fabricated from PEEK-cHAp biocomposite materials.

更多
广告
作者 Bankole I.Oladapo [1] S.Abolfazl Zahedi [2] Sikiru O.Ismail [3] Francis T.Omigbodun [4] Oluwole K.Bowoto [2] Mattew A.Olawumi [5] Musa A.Muhammad [6] 学术成果认领
作者单位 School of Engineering and Sustainable Development, De Montfort University, Leicester, UK;Faculty of Engineering, Computing and media, De Montfort University, Leicester, UK [1] School of Engineering and Sustainable Development, De Montfort University, Leicester, UK [2] Centre for Engineering Research, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK [3] Mechanical Engineering, Loughborough University, Loughborough, UK [4] Faculty of Engineering, Computing and media, De Montfort University, Leicester, UK [5] Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK [6]
栏目名称 RESEARCH ARTICLES
发布时间 2021-02-02
基金项目
We appreciate the funding/financial support received from the Higher Education Innovation Fund (HEIF) of De Montfort University, Leicester, UK, under Research Project
提交
  • 浏览21
  • 下载19
生物设计与制造(英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷