• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于深度可分离稠密网络的新型冠状病毒肺炎X线图像检测方法研究

Research on coronavirus disease 2019 (COVID-19) detection method based on depthwise separable DenseNet in chest X-ray images

摘要新型冠状病毒肺炎肆虐全球,为了更加快速地诊断新型冠状病毒肺炎(COVID-19),本文提出一种深度可分离稠密网络DWSDenseNet,以2 905例COVID-19胸部X线平片影像作为实验数据集,在网络训练前使用限制对比度自适应直方图均衡化(CLAHE)算法对图像进行预处理,增强图像的对比度,将预处理之后的图像放入训练网络中,采用Leaky ReLU作为激活函数,调整参数以达到最优.本文引入VGG16、ResNet18、ResNet34、DenseNet121和SDenseNet模型进行比较,所提出的网络在三分类实验中相较于ResNet34在准确率、灵敏度和特异性上分别提高了2.0%、2.3%、1.5%.相对于改进前的SDenseNet网络,本文模型的参数量减少了43.9%,但分类效果并未下降.通过对比实验可以发现,本文所提出的深度可分离稠密网络对COVID-19胸部X线平片影像数据集具有良好的分类效果,在保证准确率的情况下,深度可分离卷积能够有效地降低模型参数量.

更多
广告
  • 浏览97
  • 下载0
生物医学工程学杂志

生物医学工程学杂志

2020年37卷4期

557-565页

MEDLINEISTICPKUCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷