创伤病人术后多重耐药菌医院感染风险模型的构建
Construction of nosocomial multi-drug resistant bacterias infection risk model of trauma patients undergoing surgery
摘要目的:应用Lasso-Logistic回归分析和分类树(CHAID)算法分析创伤病人术后多重耐药菌(MDRO)医院感染的危险因素,构建风险预测模型并比较结果的优劣性.方法:回顾性分析2019年1月—2022年1月郑州大学附属郑州中心医院创伤住院病人的临床资料,应用CHAID算法和Lasso-Logistic回归分别建立风险预测模型,采用拟合优度检验评价模型效果,使用受试者工作特征(ROC)曲线下面积(AUC)比较两种预测模型的优劣.结果:共纳入821例创伤病人,其中创伤合并多重耐药菌感染191例,感染率为23.26%,分类树模型和Logistic回归结果均显示,急性生理学及慢性健康状况评分系统(APACHE Ⅱ)评分≥20分、发热时间≥3 d、住院时间≥10 d、入院时降钙素原(PCT)≥0.5 ng/L是创伤病人术后多重耐药菌感染的独立危险因素.分类树模型的风险预测正确率为79.2%,模型拟合效果较好;Lasso-Logistic回归模型Hosmer-Lemeshow拟合优度检验显示模型拟合较好(P=0.146),Bootstrap内部验证模型预测能力较好.分类树模型的AUC为0.792[95%CI(0.763,0.819)],Lasso-Logistic回归模型的AUC为0.862[95%CI(0.836,0.885)],两种模型的预测价值中等,通过比较两种模型预测价值差异有统计学意义(P<0.001).净重分类指数(net reclassification index,NRI)评价提示Lasso-Logistic回归模型优于分类树模型(NRI=0.153 6).结论:Lasso-Logistic回归分析与分类树模型均能提供较为直观的呈现形式,两种模型互补结合使用可以从不同角度早期识别创伤病人术后多重耐药菌感染的风险因素,应采取有效防控措施降低多重耐药菌医院感染发生率.
更多相关知识
- 浏览77
- 被引1
- 下载74

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



