• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks

摘要Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hun-dreds of complex traits in the past decade,the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data.Towards this goal,gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention,due to such advantages as straightforward interpretation,less multiple testing burdens,and robustness across studies.However,existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics.To overcome this limitation,we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotypeassociated genes and relevant tissues.Through extensive simulation studies,we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype.In applications to real GWAS data of 14 complex phenotypes,we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype.With this understanding,we expect to see SIGNET as a valuable tool for integrative GWAS analysis,thereby boosting the prevention,diagnosis,and treatment of human inherited diseases and eventually facilitating precision medicine.

更多
广告
作者单位 Department of Computer Science, Tsinghua University, Beijing 100084, China;Ministry of Education Key Laboratory of Bioinformatics and Bioinformatics Division, Tsinghua National Laboratory for Information Science and Technology,Beijing 100084, China;Department of Statistics, Stanford University, CA 94305, USA [1] Department of Statistics, Stanford University, CA 94305, USA [2] Department of Computer Science, Tsinghua University, Beijing 100084, China;Ministry of Education Key Laboratory of Bioinformatics and Bioinformatics Division, Tsinghua National Laboratory for Information Science and Technology,Beijing 100084, China [3] Ministry of Education Key Laboratory of Bioinformatics and Bioinformatics Division, Tsinghua National Laboratory for Information Science and Technology,Beijing 100084, China;Department of Automation, Tsinghua University, Beijing 100084, China [4]
栏目名称
DOI 10.1093/jmcb/mjx059
发布时间 2018-04-25
提交
  • 浏览9
  • 下载0
分子细胞生物学报(英文版)

分子细胞生物学报(英文版)

2017年9卷6期

436-452页

SCIMEDLINEISTICCSCDBP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷