医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Predicting acute respiratory distress syndrome risks in acute pancreatitis patients complicated by sepsis:insights from machine learning models using MIMIC database

摘要Objective Acute respiratory distress syndrome(ARDS)is a frequent complication in patients with acute pancreatitis(AP),particularly those who develop sepsis,and is associated with a longer duration of hospitalization and mortality.Therefore,developing a predictive model to identify these high-risk patients is of significant clinical importance.Methods Retrospective data from 572 patients with AP complicated by sepsis identified using ICD-9 and ICD-10 codes were evaluated.Re-cursive feature elimination with cross-validation(RFECV)was used to identify significant predictors of ARDS.Four machine learning(mL)models-AdaBoost,RandomForest,LightGBM,and XGBoost-were developed and rigorously validated.SHapley Additive exPlanations(SHAP)analysis was used to interpret the influence of distinct features on model predictions.Results Of the 572 patients includ-ed,47.6%developed ARDS.The XGBoost model,achieving an Area Under the Curve(AUC)of 0.803(95%CI:0.737~0.863)on the validation dataset,outperformed the other models.SHAP a-nalysis identified the Oxford Acute Severity of Illness score(OASIS),the Logistic Organ Dysfunction System(LODS)score,temperature,and partial pressure of oxygen as significant predictors of ARDS.Conclusions The XGBoost model demonstrates significant potential for predicting ARDS in patients with AP with concurrent sepsis,highlighting the importance of specific clinical predictors.This study may help clinicians identify high-risk patients and optimize treatment strategies.

更多
广告
作者 Li Yufeng [1] Peng Yuhuai [1] Song Yinghui [2] 学术成果认领
作者单位 Central Laboratory,the First Affiliated Hospital of Hunan Normal University,Hunan Provincial People's Hospital,Chang-sha,China;Department of Hepatobiliary Surgery,the First Affiliated Hospital of Hunan Normal University,Hunan Provincial People's Hospital,Changsha,China [1] Central Laboratory,the First Affiliated Hospital of Hunan Normal University,Hunan Provincial People's Hospital,Chang-sha,China [2]
栏目名称
DOI 10.3969/j.issn.2096-4544.2025.03.014
发布时间 2025-11-25(万方平台首次上网日期,不代表论文的发表时间)
  • 浏览0
  • 下载0
实用休克杂志(中英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷