医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Machine Learning-Based Quantitative Structure-Activity Relationship and ADMET Prediction Models for ERa Activity of Anti-Breast Cancer Drug Candidates

摘要Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantita-tive structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Ex-cretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regres-sion(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model pre-dicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sen-sitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.

更多
广告
作者 XU Zonghuang [1] 学术成果认领
作者单位 School of Information Management,Nanjing University,Nanjing 210023,Jiangsu,China [1]
分类号 R965.1Q-03
栏目名称
DOI 10.1051/wujns/2023283257
发布时间 2023-07-28(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览7
  • 下载0
武汉大学自然科学学报(英文版)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷