医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

基于独立成分分析和流形学习的眼电伪差去除

Real-Time Removal of Ocular Artifacts from EEG Signals Using ICA and Manifold Algorithm

摘要针对眼电伪差严重干扰脑电(EEG)信号的理解和分析的问题,提出了一种新的方法用于实时地去除脑电中的眼电伪差.该方法使用独立成分分析(ICA)分解EEG信号,提取独立成分的地形图和功率谱作为特征,并采用基于模板的Isomap算法降低特征的维数.将新的特征样本送到分类器中以识别眼电伪差独立分量,几个典型分类器的分类结果显示,基于模板的Isomap算法结合使用最近邻算法进行分类时,识别伪差的正确率最高.实验结果表明,提出的方法在有效去除眼电伪差的同时,很好地保留了大脑神经信号,也证明了新的Isomap算法用于眼电伪差特征的降维的有效性.

更多
广告
  • 浏览5
  • 下载0
西安交通大学学报

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷