• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于CNN-BLSTM的化妆品违法违规行为分类模型

Classification model for judging illegal and irregular behavior for cosmetics based on CNN-BLSTM

摘要针对化妆品安全监管部门抽样检测所含违法违规行为自动识别且分类困难的问题,建立语义分类自动识别模型,辅助有关部门构建智能化管理体系,依靠数据实现科学决策及有效监管.本文分别使用中文词向量及字向量作为双路模型输入,采用CNN(convolutional neural network)网络模型训练字向量,BLSTM(bidirection-al long short-term memory)网络模型训练词向量,并在BLSTM中引入位置注意力机制,构建基于CNN-BLSTM 的字词双维度化妆品违法违规行为分类模型.在染发类化妆品抽样检测数据集上进行的对比实验结果表明,CNN-BLSTM模型准确率比常用的几种深度神经网络模型均有明显提高,验证了其合理性和有效性.

更多
广告
  • 浏览1
  • 下载0
智能系统学报

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷