摘要医学影像报告的自动生成可以减轻医生的工作强度,减少误诊或漏诊的情况发生.由于医学影像的独特性,通常病灶比较小,与正常区域灰度差异难以分辨,导致文本生成时关键词的缺失,报告不够准确.对此提出一种面向医学影像报告生成的门归一化编解码网络,通过门控通道变换单元优化视觉特征提取,加强特征间的差异,自动筛选关键特征;提出门归一化算法,沿通道维度整合上下文信息,在浅层网络激活、深层网络抑制通道间神经元活性,过滤无效特征,使文本和视觉语义充分交互,提高报告生成质量.在 2 种广泛使用的基准数据集IU X-Ray和MIMIC-CXR上的试验结果表明,模型能够取得先进的性能,生成的影像报告也具有更好的视觉语义一致性.
更多相关知识
- 浏览0
- 被引0
- 下载3

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文