• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于YOLO神经网络和迁移学习的结直肠息肉内镜图像分割

摘要目的 基于YOLOv8神经网络开发针对结直肠息肉内镜图像的语义分割模型.方法 收集2018年6月至2024年2月期间的结直肠息肉内镜数据,包括静态图像和视频.所有样本均经过病理学验证,分为锯齿状病变和腺瘤性息肉两类.使用LabelMe工具进行了图像的多边形标注,并转换为YOLO模型兼容的格式.利用这些数据,进行了不同规模的YOLO神经网络模型的迁移学习和微调训练.模型的性能在验证集和测试集上进行了评估,包括精确率(Precision)、检测速度、准确率(ACC)、平均交并比(mIoU)等指标.结果 本研究开发了 5种不同版本大小的YOLOv8语义分割模型,包括v8n、v8s、v8m、v8l、v8x.其中YOLOv8l在速度(107.5帧/s)和精确率(94.50%)达到了最佳平衡,在内部验证集中YOLOv8l的准确率达0.924,mIoU达83.06%,Dice系数达0.941.在外部测试集中,准确率为0.902,mIoU为80.08%,Dice系数为0.923.结论 基于YOLOv8l构建的结直肠息肉语义分割模型具有良好地预测性能,能够自动对息肉进行定位和分类,并精确描述息肉的像素级轮廓.

更多
广告
作者 陈健 [1] 王甘红 [2] 夏开建 [3] 汤洪 [4] 徐晓丹 [1] 刘罗杰 [1] 学术成果认领
作者单位 215500 常熟市第一人民医院消化内科 [1] 215500 常熟市中医院消化内科 [2] 215500 常熟市医学人工智能与大数据重点实验室 [3] 215500 常熟市辛庄人民医院消化内科 [4]
分类号 R574.6TP181
栏目名称 临床经验
DOI 10.3969/j.issn.1672-2159.2024.05.018
发布时间 2024-09-02
基金项目
苏州市第二十三批科技发展计划项目 常熟市医学人工智能与大数据重点实验室能力提升项目 常熟市科技计划项目
  • 浏览6
  • 下载2
现代消化及介入诊疗

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷