• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

结合多任务学习的半监督病理图像分割方法

Semi-supervised Histopathological Image Segmentation Method Based on Multi-task Learning

摘要病理图像自动分割是计算机辅助诊断技术的重要组成部分,可降低病理科医师工作负担,提高诊断效率和准确性.本文介绍一种结合多任务学习的半监督病理图像分割方法.该方法基于半监督的方式同时进行癌症区域图像分割与分类,即首先基于极少量像素级标注图像对分割网络进行训练,然后结合图像级标注图像同时完成图像分割及分类.在网络训练过程中,通过此2个任务的交替迭代以优化网络参数,降低了深度学习模型对图像标注的依赖性.在此基础上,模型引入了动态加权交叉熵损失函数,可利用分类预测概率值自动完成每个像素的权重分配,以提高分割网络对预测概率值较低目标区域的关注度.该策略可有效保持癌症区域的细节信息,经验证可在像素标注数据量不足的情况下对乳腺癌病理图像获得良好的癌症区域分割结果.

更多
广告
  • 浏览84
  • 下载6
协和医学杂志

协和医学杂志

2023年14卷2期

416-425页

ISTICPKUCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷