概化理论方差分量估计的跨分布分析
Analysis of Cross-distribution for Estimating Variance Components in Generalizability Theory
摘要方差分量估计是进行概化理论分析的关键。采用MonteCarlo模拟技术,探讨心理与教育测量数据分布对概化理论各种方法估计方差分量的影响。数据分布包括正态、二项和多项分布,估计方法包括Traditional、Jackknife、Bootstrap和MCMC方法。结果表明:(1)Traditional方法估计正态分布和多项分布数据的方差分量相对较好,估计二项分布数据需要校正,Jackknife方法准确地估计了三种分布数据的方差分量,校正的Bootstrap方法和有先验信息的MCMC方法(MCMCinf)估计三种分布数据的方差分量结果较好;(2)心理与教育测量数据分布对四种方法估计概化理论方差分量有影响,数据分布制约着各种方差分量估计方法性能的发挥,需要加以区分地使用。
更多相关知识
- 浏览4
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



