摘要针对LS-SVM的网络入侵检测技术存在检测率低和误判率高的缺点,结合果蝇优化算法的快速寻优和全局最优的优点,提出一种FOA优化LS-SVM的网络入侵检测方法.通过FOA优化LS-SVM的惩罚因子C和核函数参数g,实现网络入侵类型的检测.以KDD99 CUP数据集为研究对象,实验结果表明,FOA-LSSVM算法在分类性能和分类准确率上都优于单纯的LS-SVM和BP,FOA-LSSVM算法的网络入侵检测率平均高达96.33%.
更多相关知识
- 浏览0
- 被引2
- 下载0
相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文