摘要现实世界中广泛存在着类别分布不均衡的数据,而传统分类算法在数据失衡的情况下分类效果很不理想,为此提出一种基于决策准则优化的组合分类算法.该算法基于朴素贝叶斯模型输出的后验概率,以不均衡数据评价指标作为目标函数,对决策阈值(二类)或错分代价参数(多类)进行优化,得到最佳的分类决策准则;同时为了提高分类的泛化性,提出一种自适应随机子空间组合分类算法,增强基分类器之间的差异性,避免分类器学习和决策准则优化的过拟合,并可自动获得基分类器的最佳数量.通过大量UCI数据集的实验验证表明,与其它同类算法相比,该算法在精度和效率上都具有更好的处理不均衡数据的优势.
更多相关知识
- 浏览1
- 被引7
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



