摘要Mutations in the human mitochondrial genome have been observed in all types of human cancer,indicating that mutations might contribute to tumorigenesis, metastasis, recurrence, or drug response.This possibility is appealing because of the known shift from oxidative metabolism to glycolysis, known as the Warburg effect, that occurs in malignancy. Mitochondrial DNA (mtDNA) mutations could either be maternally inherited and predispose to cancer (germ line mutations) or occur sporadically in the mtDNA of specific tissues (tissue- or tumor-specific somatic mutations) and contribute to the tumor initiation and progression process. High-throughput sequencing technologies now enable comprehensive detec-tion of mtDNA variation in tissues and bodily fluids, with the potential to be used as an early detection tool that may impact the treatment of cancer. Here, we discuss insights into the roles of mtDNA mu-tations in carcinogenesis, highlighting the complexities involved in the analysis and interpretation of mitochondrial genomic content, technical challenges in studying their contribution to pathogenesis, and the value of mtDNA mutations in developing early detection, diagnosis, prognosis, and therapeutic strategies for cancer.
更多相关知识
- 浏览13
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文