医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Highly Regional Genes:graph-based gene selection for single-cell RNA-seq data

摘要Gene selection is an indispensable step for analyzing noisy and high-dimensional single-cell RNA-seq(scRNA-seq)data.Compared with the commonly used variance-based methods,by mimicking the hu-man maker selection in the 2D visualization of cells,a new feature selection method called HRG(Highly Regional Genes)is proposed to find the informative genes,which show regional expression patterns in the cell-cell similarity network.We mathematically find the optimal expression patterns that can maximize the proposed scoring function.In comparison with several unsupervised methods,HRG shows high accuracy and robustness,and can increase the performance of downstream cell clustering and gene correlation analysis.Also,it is applicable for selecting informative genes of sequencing-based spatial transcriptomic data.

更多
广告
作者 Yanhong Wu [1] Qifan Hu [1] Shicheng Wang [1] Changyi Liu [1] Yiran Shan [1] Wenbo Guo [1] Rui Jiang [1] Xiaowo Wang [1] Jin Gu [1] 学术成果认领
作者单位 MOE Key Laboratory of Bioinformatics,BNRIST Bioinformatics Division,Department of Automation,Tsinghua University,Beijing 100084,China [1]
栏目名称
发布时间 2022-11-21(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览18
  • 下载0
遗传学报

遗传学报

2022年49卷9期

891-899页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷