Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network
摘要Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented oppor-tunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and complementary information simultaneously,including gene expression profiles,spatial locations,and histology images.However,most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images.To fully leverage the multi-modal information,we propose a SPAtially embedded Deep Attentional graph Clustering(SpaDAC)method to identify spatial domains while reconstructing denoised gene expression profiles.This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives.Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets.SpaDAC is a valuable tool for spatial domain detection,facilitating the comprehension of tissue architecture and cellular microenvi-ronment.The source code of SpaDAC is freely available at Github(https://github.com/huoyuying/SpaDAC.git).
更多相关知识
- 浏览3
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文