医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

RNAirport:a deep neural network-based database characterizing representative gene models in plants

摘要A 5'-leader,known initially as the 5'-untranslated region,contains multiple isoforms due to alternative splicing(aS)and alternative transcription start site(aTSS).Therefore,a representative 5'-leader is demanded to examine the embedded RNA regulatory elements in controlling translation efficiency.Here,we develop a ranking algorithm and a deep-learning model to annotate representative 5'-leaders for five plant species.We rank the intra-sample and inter-sample frequency of aS-mediated transcript isoforms using the Kruskal-Wallis test-based algorithm and identify the representative aS-5'-leader.To further assign a representative 5'-end,we train the deep-learning model 5'IeaderP to learn aTSS-mediated 5'-end distribution patterns from cap-analysis gene expression data.The model accurately predicts the 5'-end,confirmed experimentally in Arabidopsis and rice.The representative 5'-leader-contained gene models and 5'leaderP can be accessed at RNAirport(http://www.rnairport.com/leader5P/).The Stage 1 annotation of 5'-leader records 5'-leader diversity and will pave the way to Ribo-Seq open-reading frame annotation,identical to the project recently initiated by human GENCODE.

更多
广告
作者 Sitao Zhu [1] Shu Yuan [1] Ruixia Niu [1] Yulu Zhou [1] Zhao Wang [1] Guoyong Xu [2] 学术成果认领
作者单位 State Key Laboratory of Hybrid Rice,Institute for Advanced Studies(IAS),Wuhan University,Wuhan,Hubei 430072,China [1] State Key Laboratory of Hybrid Rice,Institute for Advanced Studies(IAS),Wuhan University,Wuhan,Hubei 430072,China;Hubei Hongshan Laboratory,Wuhan,Hubei 430070,China [2]
栏目名称
DOI 10.1016/j.jgg.2024.03.004
发布时间 2024-07-23(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览16
  • 下载0
遗传学报

遗传学报

2024年51卷6期

652-664页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷