• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

SpaGRA:Graph augmentation facilitates domain identification for spatially resolved transcriptomics

摘要Recent advances in spatially resolved transcriptomics(SRT)have provided new opportunities for charac-terizing spatial structures of various tissues.Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks.Currently,most methods define adjacency relation between cells or spots by their spatial distance in SRT data,which overlooks key biological interactions like gene expression similarities,and leads to inaccuracies in spatial domain identification.To tackle this challenge,we propose a novel method,SpaGRA(https://github.com/sunxue-yy/SpaGRA),for automatic multi-relationship construction based on graph augmentation.SpaGRA uses spatial distance as prior knowl-edge and dynamically adjusts edge weights with multi-head graph attention networks(GATs).This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning.Additionally,SpaGRA uses these multi-view relationships to construct negative samples,addressing sampling bias posed by random selection.Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols.Using SpaGRA,we analyze the functional regions in the mouse hypothalamus,identify key genes related to heart development in mouse embryos,and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data.Overall,SpaGRA can effectively characterize spatial structures across diverse SRT datasets.

更多
广告
作者 Xue Sun [1] Wei Zhang [1] Wenrui Li [2] Na Yu [1] Daoliang Zhang [1] Qi Zou [1] Qiongye Dong [3] Xianglin Zhang [4] Zhiping Liu [1] Zhiyuan Yuan [5] Rui Gao [1] 学术成果认领
作者单位 Center of Intelligent Medicine,School of Control Science and Engineering,Shandong University,Jinan,Shandong 250061,China [1] MOE Key Lab of Bioinformatics and Bioinformatics Division of BNRIST,Department of Automation,Tsinghua University,Beijing 100084,China [2] Institute of Precision Medicine,Peking University Shenzhen Hospital,Shenzhen,Guangdong 518036,China [3] Department of Clinical Laboratory,The Second Hospital,Cheeloo College of Medicine,Shandong University,Jinan,Shandong 250033,China [4] Institute of Science and Technology for Brain-Inspired Intelligence,Center for Medical Research and Innovation,Shanghai Pudong Hospital,Fudan University Pudong Medical Center,Fudan University,Shanghai 200433,China [5]
栏目名称
DOI 10.1016/j.jgg.2024.09.015
发布时间 2025-03-03
提交
  • 浏览0
  • 下载0
遗传学报

遗传学报

2025年52卷1期

93-104页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷