• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于NODE-UNet++和标记分水岭算法的红细胞图像分割

Red blood cell image segmentation based on NODE-UNet++and marker watershed

摘要对血液涂片图像中的红细胞进行精确分割是一项重要的技术,也是一个难题,主要是因为红细胞经常重叠,没有明显边界.针对此问题,本文提出一种基于U-Net++和神经常微分方程(Neural Ordinary Differential Equations,NODE)的深度学习网络NODE-UNet++用于红细胞的初步分割,再利用标记分水岭算法分割血液涂片图像中的粘连红细胞.首先对图像进行裁剪和标注,突出待分割区域;然后应用新的语义分割体系结构NODE-UNet++对预处理后的图像进行初始分割得到概率灰度图;最后采用标记分水岭算法将灰度图中的粘连红细胞分离,得到最终红细胞分割结果图.实验结果表明,Dice系数达到96.89%、平均像素准确率达到98.97%、平均交并比达到96.33%.通过对不同血液涂片图像的分割结果表明,该方法能高效精确地提取每个红细胞,满足后续红细胞图像处理的需求.

更多
广告
  • 浏览0
  • 下载0
液晶与显示

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷