多通道条件生成对抗网络视网膜血管分割算法
Multi-channel conditional generative adversarial networks retinal vessel segmentation algorithm
摘要目的 提出一种对医学眼底图像中的血管部分进行准确分割的模型,避免传统医学图像处理算法严重依赖于人工设计的特征、特征的设计较复杂、模型的泛化能力较差等问题.方法 本研究中采用深度学习的算法实现医学图像中对眼底图像中血管部分的分割任务,提出了一种基于改进的条件生成对抗网络(cGAN)的血管分割算法,并在该任务中引入了多尺度的网络结构用于提取眼底图像中不同类型的血管.结果 该分割模型在特征比较明显的主血管部分和对比度较低、提取难度较大的血管分支上均能取得很好的效果,实现了眼底图像上血管的自动分割.在模型评估阶段,本研究中通过多个在医学图像分割领域中广泛应用的评价指标对本研究中设计的模型进行评估.在DRIVE数据集上的验证结果显示,特异度为0.9829,F1评分为0.7944,G-mean为0.8748,马修斯相关系数(MCC)为0.7764,在STARE数据集上特异度为0.9782,F1评分为0.7735,MCC为0.7573.结论 多通道cGAN相对于同任务的分割算法性能具有很大的提升,并在某些评价指标上能够接近医生分割的结果.
更多相关知识
abstractsObjective To propose a model for accurately segmenting blood vessels in medical fundus images. Methods The algorithm of deep learning was used for the task of automatic segmentation of blood vessels in retinal fundus images in this paper. An improved vascular segmentation algorithm was proposed. For the different types of blood vessels in the fundus image, a multi-scale network structure was designed to extract features of both main blood vessels and vessel branches at the same time. Results The segmentation model proposed could achieve good results on all kinds of blood vessels even if they have low contrast and few obvious characteristics. The automatic vessel segmentation of retinal fundus images was implemented, and the performance of the model was evaluated through multiple evaluation indexes which are widely used in the field of medical image segmentation in the test stage. A specificity of 0. 9829,an F1 score of 0. 7944,a G-mean of 0. 8748,an Matthews correlation coefficient(MCC) of 0. 7764 and a specificity of 0. 9782 were obtained on the DRIVE dataset. An F1 score of 0. 7735 and an MCC of 0. 7573 were obtained on the STARE data set. Conclusions The proposed method has a great improvement over the segmentation algorithm of the same task. Furthermore,the results generated by our model can achieve comparable effect with the segmentation of human doctor.
More相关知识
- 浏览201
- 被引4
- 下载56

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文