• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于深度学习方法检测皮肤镜图像中黑色素瘤的研究进展与展望

Progress and prospects of detecting melanoma in dermoscopy images based on deep learning method

摘要阐述了通过皮肤镜图像对黑色素瘤进行计算机辅助检测需要解决的问题,介绍了卷积神经网络、残差网络和迁移学习方法.在此基础上,从病灶分割与病灶分类2个方面分析了基于深度学习方法检测黑色素瘤的研究成果,明确了算法的改进和数据集的完善对黑色素瘤检测准确性的提高具有重要作用.指出了利用患者多模态数据进行检测和发展能利用智能手机进行检测的深度学习算法是未来的重点研究方向,为深化黑色素瘤自动检测研究、推动自动检测方法应用于临床诊断提供了基础.

更多
广告
  • 浏览138
  • 下载64
医疗卫生装备

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷