• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于径向基函数神经网络的脑部电阻抗断层成像仿真研究

Simulation study of brain electrical impedance tomography based on radial basis function neural network

摘要目的:研究不同实现方式的径向基函数神经网络(radial basis function neural network,RBFNN)在具有真实解剖结构的脑部模型下的电阻抗断层成像(electrical impedance tomography,EIT)能力,为实际成像方法选择提供参考.方法:利用COMSOL Multiphysics软件基于脑部CT图像构建具有真实解剖结构的多层脑部EIT仿真模型并生成EIT仿真数据集,基于该数据集探究精确RBFNN、基于正交最小二乘法的RBFNN、基于K-Means的RBFNN 3种成像方法对图像重建结果的影响.采用图像相关系数(image correlation coefficient,ICC)和均方根误差(root mean square error,RMSE)评价成像结果.结果:无噪声的情况下3种方法均可成像且精确RBFNN的成像效果最好,在测试集中ICC和RMSE的平均值分别为0.784和0.467.基于正交最小二乘法的RBFNN在隐藏层节点数为50时成像效果最好,其ICC和RMSE的平均值分别为0.788和0.462.基于K-Means的RBFNN在噪声水平为30、40、50、60、70、80 dB时均能获得较好的成像结果,且能保持较稳定的ICC和RMSE,具备较好的鲁棒性.结论:3种RBFNN均可用于脑部EIT图像重建,且各有优劣,可根据实际情况选择合适的RBFNN用于EIT重建.

更多
广告
  • 浏览5
  • 下载0
医疗卫生装备

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷