医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Machine learning-assisted microfluidic approach for broad-spectrum liposome size control

摘要Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.

更多
广告
作者 Yujie Jia [1] Xiao Liang [1] Li Zhang [2] Jun Zhang [1] Hajra Zafar [1] Shan Huang [1] Yi Shi [3] Jian Chen [1] Qi Shen [1] 学术成果认领
作者单位 Engineering Research Center of Cell & Therapeutic Antibody,Ministry of Education,School of Pharmacy,Shanghai Jiao Tong University,Shanghai,200240,China [1] Instrumental Analysis Center,Shanghai Jiao Tong University,Shanghai,200240,China [2] Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders,Bio-X Institutes,Shanghai Jiao Tong University,Shanghai,200240,China [3]
栏目名称
DOI 10.1016/j.jpha.2025.101221
发布时间 2025-09-30(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览2
  • 下载1
药物分析学报(英文版)

药物分析学报(英文版)

2025年15卷6期

1238-1248页

SCIMEDLINEISTICCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷