摘要Numerous c-mesenchymal-epithelial transition(c-MET)inhibitors have been reported as potential anticancer agents.However,most fail to enter clinical trials owing to poor efficacy or drug resistance.To date,the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed.In this study,we constructed the largest c-MET dataset,which included 2,278 molecules with different struc-tures,by inhibiting the half maximal inhibitory concentration(IC50)of kinase activity.No significant differences in drug-like properties were observed between active molecules(1,228)and inactive mol-ecules(1,050),including chemical space coverage,physicochemical properties,and absorption,distri-bution,metabolism,excretion,and toxicity(ADMET)profiles.The higher chemical diversity of the active molecules was downscaled using t-distributed stochastic neighbor embedding(t-SNE)high-dimensional data.Further clustering and chemical space networks(CSNs)analyses revealed commonly used scaffolds for c-MET inhibitors,such as M5,M7,and M8.Activity cliffs and structural alerts were used to reveal"dead ends"and"safe bets"for c-MET,as well as dominant structural fragments consisting of pyr-idazinones,triazoles,and pyrazines.Finally,the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules,including at least three aromatic het-erocycles,five aromatic nitrogen atoms,and eight nitrogen-oxygen atoms.Overall,our analyses revealed potential structure-activity relationship(SAR)patterns for c-MET inhibitors,which can inform the screening of new compounds and guide future optimization efforts.
更多相关知识
- 浏览2
- 被引0
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



