医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

A multimodal contrastive learning framework for predicting P-glycoprotein substrates and inhibitors

摘要P-glycoprotein(P-gp)is a transmembrane protein widely involved in the absorption,distribution,metabolism,excretion,and toxicity(ADMET)of drugs within the human body.Accurate prediction of P-gp inhibitors and substrates is crucial for drug discovery and toxicological assessment.However,existing models rely on limited molecular information,leading to suboptimal model performance for predicting P-gp inhibitors and substrates.To overcome this challenge,we compiled an extensive dataset from public databases and literature,consisting of 5,943 P-gp inhibitors and 4,018 substrates,notable for their high quantity,quality,and structural uniqueness.In addition,we curated two external test sets to validate the model's generalization capability.Subsequently,we developed a multimodal graph contrastive learning(GCL)model for the prediction of P-gp inhibitors and substrates(MC-PGP).This framework integrates three types of features from Simplified Molecular Input Line Entry System(SMILES)sequences,molecular fingerprints,and molecular graphs using an attention-based fusion strategy to generate a unified mo-lecular representation.Furthermore,we employed a GCL approach to enhance structural representations by aligning local and global structures.Extensive experimental results highlight the superior perfor-mance of MC-PGP,which achieves improvements in the area under the curve of receiver operating characteristic(AUC-ROC)of 9.82%and 10.62%on the external P-gp inhibitor and external P-gp substrate datasets,respectively,compared with 12 state-of-the-art methods.Furthermore,the interpretability analysis of all three molecular feature types offers comprehensive and complementary insights,demonstrating that MC-PGP effectively identifies key functional groups involved in P-gp interactions.These chemically intuitive insights provide valuable guidance for the design and optimization of drug candidates.

更多
广告
作者 Yixue Zhang [1] Jialu Wu [2] Yu Kang [2] Tingjun Hou [2] 学术成果认领
作者单位 College of Pharmaceutical Sciences,Zhejiang University,Hangzhou,310058,China;Polytechnic Institute of Zhejiang University,Zhejiang University,Hangzhou,310015,China [1] College of Pharmaceutical Sciences,Zhejiang University,Hangzhou,310058,China [2]
栏目名称
DOI 10.1016/j.jpha.2025.101313
发布时间 2025-11-24(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览0
  • 下载0
药物分析学报(英文版)

药物分析学报(英文版)

2025年15卷8期

1810-1824页

SCIMEDLINEISTICCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷