医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

ACtriplet:An improved deep learning model for activity cliffs prediction by integrating triplet loss and pre-training

摘要Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pre-training.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization.

更多
广告
作者 Xinxin Yu [1] Yimeng Wang [1] Long Chen [1] Weihua Li [1] Yun Tang [1] Guixia Liu [1] 学术成果认领
作者单位 Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,Shanghai Key Laboratory of New Drug Design,School of Pharmacy,East China University of Science and Technology,Shanghai,200237,China [1]
栏目名称
DOI 10.1016/j.jpha.2025.101317
发布时间 2025-11-24(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览1
  • 下载0
药物分析学报(英文版)

药物分析学报(英文版)

2025年15卷8期

1837-1847页

SCIMEDLINEISTICCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷