医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

ToxBERT:An explainable AI framework for enhancing prediction of adverse drug reactions and structural insights

摘要Accurate prediction of drug-induced adverse drug reactions(ADRs)is crucial for drug safety evaluation,as it directly impacts public health and safety.While various models have shown promising results in predicting ADRs,their accuracy still needs improvement.Additionally,many existing models often lack interpretability when linking molecular structures to specific ADRs and frequently rely on manually selected molecular fingerprints,which can introduce bias.To address these challenges,we propose ToxBERT,an efficient transformer encoder model that leverages attention and masking mechanisms for simplified molecular input line entry system(SMILES)representations.Our results demonstrate that ToxBERT achieved area under the receiver operating characteristic curve(AUROC)scores of 0.839,0.759,and 0.664 for predicting drug-induced QT prolongation(DIQT),rhabdomyolysis,and liver injury,respectively,outperforming previous studies.Furthermore,ToxBERT can identify drug substructures that are closely associated with specific ADRs.These findings indicate that ToxBERT is not only a valuable tool for understanding the mechanisms underlying specific drug-induced ADRs but also for mitigating potential ADRs in the drug discovery pipeline.

更多
广告
作者 Yujie He [1] Xiang Lv [1] Wulin Long [1] Shengqiu Zhai [1] Menglong Li [1] Zhining Wen [2] 学术成果认领
作者单位 College of Chemistry,Sichuan University,Chengdu,610064,China [1] College of Chemistry,Sichuan University,Chengdu,610064,China;Medical Big Data Center,Sichuan University,Chengdu,610064,China [2]
栏目名称
DOI 10.1016/j.jpha.2025.101387
发布时间 2025-11-24(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览2
  • 下载0
药物分析学报(英文版)

药物分析学报(英文版)

2025年15卷8期

1926-1936页

SCIMEDLINEISTICCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷