医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

TahcoRoll:fast genomic signature profiling via thinned automaton and rolling hash

摘要Objectives:Genomic signatures like k-mers have become one of the most prominent approaches to describe genomic data.As a result,myriad real-world applications,such as the construction of de Bruijn graphs in genome assembly,have been benefited by recognizing genomic signatures.In other words,an efficient approach of genomic signature profiling is an essential need for tackling high-throughput sequencing reads.However,most of the existing approaches only recognize fixed-size k-mers while many research studies have shown the importance of considering variable-length k-mers.Methods:In this paper,we present a novel genomic signature profiling approach,TahcoRoll,by extending the Aho-Corasick algorithm(AC)for the task of profiling variable-length k-mers.We first group nucleotides into two clusters and represent each cluster with a bit.The rolling hash technique is further utilized to encode signatures and read patterns for efficient matching.Results:In extensive experiments,TahcoRoll signifi-cantly outperforms the most state-of-the-art k-mer counters and has the capability of processing reads across different sequencing platforms on a budget desktop computer.Conclusions:The single-thread version of TahcoRoll is as efficient as the eight-thread version of the state-of-the-art,JellyFish,while the eight-thread TahcoRoll outperforms the eight-thread JellyFish by at least four times.

更多
广告
作者 Chelsea J.-T.Ju [1] Jyun-Yu Jiang [1] Ruirui Li [1] Zeyu Li [1] Wei Wang [1] 学术成果认领
作者单位 Department of Computer Science,University of California,Los Angeles,USA [1]
栏目名称
DOI 10.1515/mr-2021-0016
发布时间 2023-08-07(万方平台首次上网日期,不代表论文的发表时间)
  • 浏览1
  • 下载0
医学评论(英文)

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷