• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

ARU-Net:基于残差注意力机制的胸腔积液图像分割模型

ARU-Net:A Pleural Effusion Imaging Segmentation Model Based on Residual Attention Mechanism

摘要目的/意义 解决传统胸腔积液分割方法严重依赖先验知识、流程烦琐、耗时费力、性能不佳等问题,提高效率和准确率.方法/过程 根据胸部CT图像的积液特征,提出一种基于残差注意力机制的胸腔积液分割模型ARU-Net.以U-Net模型为主干网络,在编码和解码阶段引入残差注意力单元,有效获取图像上下文信息,提高对特征的利用率.结果/结论 在测试集上的DICE相似系数达到88.76%,与U-Net和ResU-Net相比在分割完整性和准确性方面具有显著优势,能够满足临床需求.

更多
广告
分类号 R-058
栏目名称 医学信息技术
DOI 10.3969/j.issn.1673-6036.2024.04.014
发布时间 2024-05-21
基金项目
河北省医学重点科技研究计划项目 河北医科大学临床医学创新研究团队项目 河北省卫生健康委员会医学科学研究课题项目
  • 浏览26
  • 下载1
医学信息学杂志

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷