遗传算法优化的 BP 神经网络在 EDX RF 中对钛铁元素含量的预测
BP Neural Network Optimized by Genetic Algorithm Approach for Titanium and Iron Content Prediction in EDXRF
摘要在能量色散X荧光分析(EDXRF)技术中,受均匀效应、颗粒效应和基体效应等的干扰,定量分析精度受到影响。本文针对这一问题提出了遗传算法(GA )优化BP神经网络(GA‐BP)的混合算法,该算法无需考虑元素浓度和射线强度之间的复杂关系。遗传算法优化BP神经网络的目的是为了获得更好的网络初始权值和阈值,其基本思想是:将初始化的BP神经网络均方根误差的倒数编码为遗传算法中个体的适应度;初始的权值和阈值用遗传算法中的个体代替,然后通过选择、交叉和变异操作挑选出最优个体,最后通过解码用最优的权值和阈值创建一个新的BP网络模型。攀枝花矿区5类矿样中钛和铁含量的整体预测和分类预测实验表明,分类预测效果远好于整体预测。预测值与化学分析值比较结果表明,其中76.7%的样品相对误差小于2%,表明了该方法在元素间基体效应校正上的有效性。
更多相关知识
- 浏览0
- 被引8
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



