医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

遗传算法优化的 BP 神经网络在 EDX RF 中对钛铁元素含量的预测

BP Neural Network Optimized by Genetic Algorithm Approach for Titanium and Iron Content Prediction in EDXRF

摘要在能量色散X荧光分析(EDXRF)技术中,受均匀效应、颗粒效应和基体效应等的干扰,定量分析精度受到影响。本文针对这一问题提出了遗传算法(GA )优化BP神经网络(GA‐BP)的混合算法,该算法无需考虑元素浓度和射线强度之间的复杂关系。遗传算法优化BP神经网络的目的是为了获得更好的网络初始权值和阈值,其基本思想是:将初始化的BP神经网络均方根误差的倒数编码为遗传算法中个体的适应度;初始的权值和阈值用遗传算法中的个体代替,然后通过选择、交叉和变异操作挑选出最优个体,最后通过解码用最优的权值和阈值创建一个新的BP网络模型。攀枝花矿区5类矿样中钛和铁含量的整体预测和分类预测实验表明,分类预测效果远好于整体预测。预测值与化学分析值比较结果表明,其中76.7%的样品相对误差小于2%,表明了该方法在元素间基体效应校正上的有效性。

更多
广告
  • 浏览0
  • 下载0
原子能科学技术

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷