• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

CT-based radiomics-deep learning model predicts occult lymph node metastasis in early-stage lung adenocarcinoma patients:A multicenter study

摘要Objective:The neglect of occult lymph nodes metastasis(OLNM)is one of the pivotal causes of early non-small cell lung cancer(NSCLC)recurrence after local treatments such as stereotactic body radiotherapy(SBRT)or surgery.This study aimed to develop and validate a computed tomography(CT)-based radiomics and deep learning(DL)fusion model for predicting non-invasive OLNM.Methods:Patients with radiologically node-negative lung adenocarcinoma from two centers were retrospectively analyzed.We developed clinical,radiomics,and radiomics-clinical models using logistic regression.A DL model was established using a three-dimensional squeeze-and-excitation residual network-34(3D SE-ResNet34)and a fusion model was created by integrating seleted clinical,radiomics features and DL features.Model performance was assessed using the area under the curve(AUC)of the receiver operating characteristic(ROC)curve,calibration curves,and decision curve analysis(DCA).Five predictive models were compared;SHapley Additive exPlanations(SHAP)and Gradient-weighted Class Activation Mapping(Grad-CAM)were employed for visualization and interpretation.Results:Overall,358 patients were included:186 in the training cohort,48 in the internal validation cohort,and 124 in the external testing cohort.The DL fusion model incorporating 3D SE-Resnet34 achieved the highest AUC of 0.947 in the training dataset,with strong performance in internal and external cohorts(AUCs of 0.903 and 0.907,respectively),outperforming single-modal DL models,clinical models,radiomics models,and radiomics-clinical combined models(DeLong test:P<0.05).DCA confirmed its clinical utility,and calibration curves demonstrated excellent agreement between predicted and observed OLNM probabilities.Features interpretation highlighted the importance of textural characteristics and the surrounding tumor regions in stratifying OLNM risk.Conclusions:The DL fusion model reliably and accurately predicts OLNM in early-stage lung adenocarcinoma,offering a non-invasive tool to refine staging and guide personalized treatment decisions.These results may aid clinicians in optimizing surgical and radiotherapy strategies.

更多
广告
作者 Xiaoyan Yin [1] Yao Lu [2] Yongbin Cui [1] Zichun Zhou [1] Junxu Wen [1] Zhaoqin Huang [3] Yuanyuan Yan [4] Jinming Yu [1] Xiangjiao Meng [1] 学术成果认领
作者单位 Department of Radiation Oncology,Shandong Cancer Hospital and Institute,Shandong First Medical University and Shandong Academy of Medical Science,Jinan 250117,China [1] School of Computer Science and Engineering,Sun Yat-sen University,Guangzhou 510006,China [2] Department of Radiology,Shandong Provincial Hospital,Shandong First Medical University,Jinan 250021,China [3] Department of Radiology,Shandong Cancer Hospital and Institute,Shandong First Medical University and Shandong Academy of Medical Science,Jinan 250117,China [4]
栏目名称
DOI 10.21147/j.issn.1000-9604.2025.01.02
发布时间 2025-04-10
提交
  • 浏览0
  • 下载0
中国癌症研究(英文版)

中国癌症研究(英文版)

2025年37卷1期

12-27页

SCIMEDLINEISTICCSCDCA

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷