医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Altered hACE2 binding affinity and S1/S2 cleavage efficiency of SARS-CoV-2 spike protein mutants affect viral cell entry

摘要SARS-CoV-2 variants are constantly emerging,hampering public health measures in controlling the number of infections.While it is well established that mutations in spike proteins observed for the different variants directly affect virus entry into host cells,there remains a need for further expansion of systematic and multifaceted comparisons.Here,we comprehensively studied the effect of spike protein mutations on spike expression and proteolytic activation,binding affinity,viral entry efficiency and host cell tropism of eight variants of concern(VOC)and variants of interest(VOI).We found that both the full-length spike and its receptor-binding domain(RBD)of Omicron bind to hACE2 with an affinity similar to that of the wild-type.In addition,Alpha,Beta,Delta and Lambda pseudoviruses gained significantly enhanced cell entry ability compared to the wild-type,while the Omicron pseudoviruses showed a slightly increased cell entry,suggesting the vastly increased rate of transmission observed for Omicron variant is not associated with its affinity to hACE2.We also found that the spikes of Omicron and Mu showed lower S1/S2 cleavage efficiency and inefficiently utilized TMPRSS2 to enter host cells than others,suggesting that they prefer the endocytosis pathway to enter host cells.Furthermore,all variants'pseudoviruses we tested gained the ability to enter the animal ACE2-expressing cells.Especially the infection potential of rats and mice showed significantly increased,strongly suggesting that rodents possibly become a reservoir for viral evolution.The insights gained from this study provide valuable guidance for a targeted approach to epidemic control,and contribute to a better understanding of SARS-CoV-2 evolution.

更多
广告
作者 Ke Wang [1] Yu Pan [2] Dianbing Wang [2] Ye Yuan [2] Min Li [2] Yuanyuan Chen [2] Lijun Bi [2] Xian-En Zhang [1] 学术成果认领
作者单位 National Key Laboratory of Biomacromolecules,Institute of Biophysics,Chinese Academy of Sciences,Beijing,100101,China;Faculty of Synthetic Biology,Shenzhen Institute of Advanced Technology,Shenzhen,518055,China;University of Chinese Academy of Sciences,Beijing,100101,China [1] National Key Laboratory of Biomacromolecules,Institute of Biophysics,Chinese Academy of Sciences,Beijing,100101,China [2]
栏目名称
DOI 10.1016/j.virs.2023.06.005
发布时间 2024-03-26(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览2
  • 下载0
中国病毒学

中国病毒学

2023年38卷4期

595-605页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷