摘要植物根系图像分割是根系构型特征提取和分析的前提.针对传统图像分割方法在处理叶菜根系弱边缘图像中存在分割精度和稳定性较差的问题,提出了一种基于改进C-V (Chan-Vese)模型的变分水平集分割算法.该算法不仅保留了C-V模型对于处理弱边缘图像的适用性,并针对叶菜根系图像局部灰度不均的特点引入了图像梯度信息,改进了原C-V模型.通过对小白菜根系样本图像的分割处理试验,证明了变分水平集分割算法的有效性.研究结果表明,相比传统的阈值处理、边缘检测及区域生长等算法,本文算法能更加精细地解决叶菜根系图像弱边缘和局部灰度不均的问题,并在分割精度和算法稳定性上具有明显的优势.变分水平集算法应用于叶菜根系构型观测系统中,可以有效地提高观测精度.
更多相关知识
- 浏览0
- 被引7
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文