Cadmium and copper uptake and accumulation by Sesbania rostrata seedling,a N-fixing annual plant:implications for the mechanism of heavy metal tolerance
摘要Sesbania rostrata,an annual tropical legume,has been found to be tolerant to heavy metals,with an unknown mechanism.It is a promising candidate species for revegetation at mine tailings.In this study,sequential extractions with five buffers and strong acids were used to extract various chemical forms of cadmium and copper in S.rostrata,with or without Cd or Cu treatments,so that the mechanisms of tolerance and detoxification could be inferred.Both metals had low transition rates from roots to the aboveground of S.rostrata.The transition ratio of Cd (4.00%) was higher than that of Cu (1.46%).The proportion of NaCl extracted Cd (mostly in proteinbinding forms) increased drastically in Cd treated plants from being undetectable in untreated plants.This suggests that Cd induced biochemical processes producing proteinlike phytochelatins that served as a major mechanism for the high Cd tolerance of S.rostrata.The case for Cu was quite different,indicating that the mechanism for metal tolerance in S.rostrata is metal-specific.The proportion of water-insoluble Cu (e.g.oxalate and phosphate) in roots increased significantly with Cu treatment,which partially explains the tolerance of S.rostrata to Cu.However,how S.rostrata copes with the high biotic activity of inorganic salts of Cu,which increased in all parts of the plant under Cu stress,is a question for future studies.Sesbania rostrata is among the very few N-fixing plants tolerant to heavy metals.This study provides evidence for the detoxification mechanism of metals in Sesbania rostrata.
更多相关知识
- 浏览82
- 被引7
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文