疟疾与气象因素关系不同模型预测效果比较
Effectiveness of back propagation neural network model and stepwise regression in prediction of malaria incidence with meteorological factors
摘要目的 分析气象因素与海南省万宁市疟疾发病率的相关性,比较BP神经网络模型和逐步回归模型对疟疾发病率的预测效果.方法 收集1995年1月-2007年12月万宁市每月气象数据和疟疾发病率数据,应用Spearman等级相关分析方法分析气象因素与疟疾发病率之间的相关性,分别用BP人工神经网络方法和逐步回归方法建立疟疾发病率的气象因子拟合模型,预测2008年各月的疟疾发病率.结果 万宁市疟疾月发病率与前1个月的平均气温、最高气温、最低气温、降雨量、日照时间均呈正相关(均P <0.05),与前1个月的平均相对湿度、平均气压均呈负相关(均P<0.01);将7种气象因素作为输入变量,疟疾发病率作为输出变量,构建内含1个隐含层的BP神经网络模型,在隐单元数为16时拟合效果最优,经过300次训练达到设定的最小训练误差为0.001,模型的均方误差和决定系数R2分别为0.002 7和0.99;将7种气象因素作为自变量,疟疾发病率作为因变量构建逐步回归模型,进入模型的变量为平均气温和平均相对湿度,模型的决定系数R2为0.40;应用2种模型对2008年各月疟疾发病率进行预测,平均绝对误差分别为1.24/10 000和0.44/10 000.结论 万宁市疟疾发病率与气象因素明显相关,利用气象因素构建的BP神经网络模型较逐步回归模型具有更好的发病率拟合效果,但逐步回归模型的预测效果更好,BP神经网络模型的泛化能力需要进一步提高.
更多相关知识
- 浏览73
- 被引6
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



