医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Bioinformatic identification of key candidate genes and pathways in axon regeneration after spinal cord injury in zebraflsh

摘要Zebrafish and human genomes are highly homologous; however, despite this genomic similarity, adult zebrafish can achieve neuronal proliferation, regeneration and functional restoration within 6–8 weeks after spinal cord injury, whereas humans cannot. To analyze dif-ferentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury, and to explore the key genes and pathways of axonal regeneration after spinal cord injury, microarray GSE56842 was analyzed using the online tool, GEO2R, in the Gene Expression Omnibus database. Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes. Finally, we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals. A total of 636 differentially expressed genes were obtained, including 255 up-regulated and 381 down-reg-ulated differentially expressed genes in axon-regenerated neurons. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained. A protein-protein interaction network contained 480 node genes and 1976 node connections. We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score. The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish. Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish. Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells, such as Schwann cells or neural progenitor cells, after spinal cord injury in zebrafish. Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish, providing targets for treatment of spinal cord injury in mammals.

更多
广告
作者单位 Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China [1] Department of Orthopedics, the Afliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China [2] Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China ;Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China [3]
栏目名称
DOI 10.4103/1673-5374.264460
发布时间 2019-09-18(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览22
  • 下载8
中国神经再生研究(英文版)

中国神经再生研究(英文版)

2020年1期

103-111页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷