医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Protective effects of pharmacological therapies in animal models of multiple sclerosis: a review of studies 2014-2019

摘要Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The dis-ability caused by inflammatory demyelination clinically dominates the early stages of relapsing-remitting MS and is reversible. Once there is considerable loss of axons, MS patients enter a secondary progressive stage. Disease-modifying drugs currently in use for MS suppress the immune system and reduce relapse rates but are not effective in the progressive stage. Various animal models of MS (mostly mouse and rat) have been established and proved useful in studying the disease process and response to therapy. The experimental autoimmune encephalomyelitis animal studies reviewed here showed that a chronic pro-gressive disease can be induced by immunization with appropriate amounts of myelin oligodendrocyte glycoprotein together with mycobacterium tuberculosis and pertussis toxin in Freund's adjuvant. The clinical manifestations of autoimmune encephalomyelitis disease were prevented or reduced by treatment with certain pharmacological agents given prior to, at, or after peak disease, and the agents had protec-tive effects as shown by inhibiting demyelination and damage to neurons, axons and oligodendrocytes. In the cuprizone-induced toxicity animal studies, the pharmacological agents tested were able to promote remyelination and increase the number of oligodendrocytes when administered therapeutically or prophy-lactically. A monoclonal IgM antibody protected axons in the spinal cord and preserved motor function in animals inoculated with Theiler's murine encephalomyelitis virus. In all these studies the pharmacological agents were administered singly. A combination therapy may be more effective, especially using agents that target neuroinflammation and neurodegeneration, as they may exert synergistic actions.

更多
广告
作者 Bridget Martinez [1] Philip V. Peplow [2] 学术成果认领
作者单位 Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA;Department of Medicine, St. Georges University School of Medicine, True Blue, Grenada [1] Department of Anatomy, University of Otago, Dunedin, New Zealand [2]
栏目名称
DOI 10.4103/1673-5374.272572
发布时间 2020-08-25(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览30
  • 下载0
中国神经再生研究(英文版)

中国神经再生研究(英文版)

2020年15卷7期

1220-1234页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷