• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

Artificial intelligence for assessment of Stargardt macular atrophy

摘要Stargardt disease(also known as juvenile macular degeneration or Stargardt macular degeneration)is an inherited disorder of the retina,which can occur in the eyes of children and young adults.It is the most prevalent form of juvenile-onset macular dystrophy,causing progressive(and often severe)vision loss.Images with Stargardt disease are characterized by the appearance of flecks in early and intermediate stages,and the appearance of atrophy,due to cells wasting away and dying,in the advanced stage.The primary measure of late-stage Stargardt disease is the appearance of atrophy.Fundus autofluorescence is a widely available two-dimensional imaging technique,which can aid in the diagnosis of the disease.Spectral-domain optical coherence tomography,in contrast,provides three-dimensional visualization of the retinal microstructure,thereby allowing the status of the individual retinal layers.Stargardt disease may cause various levels of disruption to the photoreceptor segments as well as other outer retinal layers.In recent years,there has been an exponential growth in the number of applications utilizing artificial intelligence for help with processing such diseases,heavily fueled by the amazing successes in image recognition using deep learning.This review regarding artificial intelligence deep learning approaches for the Stargardt atrophy screening and segmentation on fundus autofluorescence images is first provided,followed by a review of the automated retinal layer segmentation with atrophic-appearing lesions and fleck features using artificial intelligence deep learning construct.The paper concludes with a perspective about using artificial intelligence to potentially find early risk factors or biomarkers that can aid in the prediction of Stargardt disease progression.

更多
广告
作者 Ziyuan Wang [1] Zhihong Jewel Hu [2] 学术成果认领
作者单位 Doheny Image Analysis Laboratory,Doheny Eye Institute,Los Angeles,CA,USA;Department of Electrical Engineering,University of California,Los Angeles,CA,USA [1] Doheny Image Analysis Laboratory,Doheny Eye Institute,Los Angeles,CA,USA [2]
栏目名称
发布时间 2022-05-17
提交
  • 浏览24
  • 下载1
中国神经再生研究(英文版)

中国神经再生研究(英文版)

2022年17卷12期

2632-2636页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷