医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor regulate the interaction between astrocytes and Schwann cells at the trigeminal root entry zone

摘要The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve injury.The etiology of most primary trigeminal neuralgia is closely related to microvascular compression of the trigeminal root entry zone.This study aimed to develop an efficient in vitro model mimicking the glial environment of trigeminal root entry zone as a tool to investigate the effects of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor on the structural and functional integrity of trigeminal root entry zone and modulation of cellular interactions.Primary astrocytes and Schwann cells isolated from trigeminal root entry zone of postnatal rats were inoculated into a two-well silicon culture insert to mimic the trigeminal root entry zone microenvironment and treated with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor.In monoculture,glial cell line-derived neurotrophic factor promoted the migration of Schwann cells,but it did not have effects on the migration of astrocytes.In the co-culture system,glial cell line-derived neurotrophic factor promoted the bidirectional migration of astrocytes and Schwann cells.Brain-derived neurotrophic factor markedly promoted the activation and migration of astrocytes.However,in the co-culture system,brain-derived neurotrophic factor inhibited the migration of astrocytes and Schwann cells to a certain degree.These findings suggest that glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor are involved in the regulation of the astrocyte-Schwann cell interaction in the co-culture system derived from the trigeminal root entry zone.This system can be used as a cell model to study the mechanism of glial dysregulation associated with trigeminal nerve injury and possible therapeutic interventions.

更多
广告
作者 Madeha Ishag Adam [1] Ling Lin [2] Amir Mahmoud Makin [3] Xiao-Fen Zhang [1] Lu-Xi Zhou [1] Xin-Yue Liao [1] Li Zhao [1] Feng Wang [1] Dao-Shu Luo [1] 学术成果认领
作者单位 Key Laboratory of Brain Aging and Neurodegeneratiive Diseases of Fujian Province,Laboratory of Clinical Applied Anatomy,School of Basic Medical Sciences,Fujian Medical University,Fuzhou,Fujian Province,China [1] Public Technology Service Center of Fujian Medical University,Fuzhou,Fujian Province,China [2] Center for Membrane and Water Science&Technology,Institute of Oceanic and Environmental Chemical Engineering,Zhejiang University of Technology,Hangzhou,Zhejiang Province,China [3]
栏目名称
发布时间 2022-11-28(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览15
  • 下载2
中国神经再生研究(英文版)

中国神经再生研究(英文版)

2023年18卷6期

1364-1370页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷