医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Long-term radiofrequency electromagnetic fields exposure attenuates cognitive dysfunction in 5×FAD mice by regulating microglial function

摘要We have previously found that long-term effects of exposure to radiofrequency electromagnetic fields in 5×FAD mice with severe late-stage Alzheimer's disease reduced both amyloid-β deposition and glial activation, including microglia. To examine whether this therapeutic effect is due to the regulation of activated microglia, we analyzed microglial gene expression profiles and the existence of microglia in the brain in this study. 5×FAD mice at the age of 1.5 months were assigned to sham- and radiofrequency electromagnetic fields-exposed groups and then animals were exposed to 1950 MHz radiofrequency electromagnetic fields at a specific absorption rate of 5 W/kg for 2 hours/day and 5 days/week for 6 months. We conducted behavioral tests including the object recognition and Y-maze tests and molecular and histopathological analysis of amyloid precursor protein/amyloid-beta metabolism in brain tissue. We confirmed that radiofrequency electromagnetic field exposure for 6 months ameliorated cognitive impairment and amyloid-β deposition. The expression levels of Iba1 (pan-microglial marker) and colony-stimulating factor 1 receptor (CSF1R; regulates microglial proliferation) in the hippocampus in 5×FAD mice treated with radiofrequency electromagnetic fields were significantly reduced compared with those of the sham-exposed group. Subsequently, we analyzed the expression levels of genes related to microgliosis and microglial function in the radiofrequency electromagnetic fields-exposed group compared to those of a CSF1R inhibitor (PLX3397)-treated group. Both radiofrequency electromagnetic fields and PLX3397 suppressed the levels of genes related to microgliosis (Csf1r, CD68, and Ccl6) and pro-inflammatory cytokine interleukin-1β. Notably, the expression levels of genes related to microglial function, including Trem2, Fcgr1a, Ctss, and Spi1, were decreased after long-term radiofrequency electromagnetic field exposure, which was also observed in response to microglial suppression by PLX3397. These results showed that radiofrequency electromagnetic fields ameliorated amyloid-β pathology and cognitive impairment by suppressing amyloid-β deposition-induced microgliosis and their key regulator, CSF1R.

更多
广告
作者 Yeonghoon Son [1] Hye-Jin Park [1] Ye Ji Jeong [1] Hyung-Do Choi [2] Nam Kim [3] Hae-June Lee [1] 学术成果认领
作者单位 Division of Radiation Biomedical Research,Korea Institute of Radiological&Medical Sciences,Seoul,Korea [1] Department of EMF Research Team,Radio and Broadcasting Technology Laboratory,Electronics and Telecommunications Research Institute,Daejon,Korea [2] School of Electrical and Computer Engineering,Chungbuk National University,Cheongju,Korea [3]
发布时间 2023-04-07(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览13
  • 下载1
中国神经再生研究(英文版)

中国神经再生研究(英文版)

2023年18卷11期

2497-2503页

SCIMEDLINEISTICCSCDCABP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷