基于随机森林算法的小鼠micro-CT影像中骨骼关节特征点定位
Bone Joints Localization in Mouse Micro-CT Images Using Random Forests Algorithm
摘要随着小动物成像技术的发展,技术人员每天需要处理的小动物影像数量急剧增长,这使得自动化的小动物图像分析方法成为迫切的需求.在小鼠图像分析方面,小鼠灵活多变的身体姿态给自动化的图像分析带来困难.基于随机森林算法实现小鼠micro-CT图像中骨骼关节点的自动定位,为解决小鼠影像中身体姿态的自动识别打下基础.该算法主要分3步:先通过分类随机森林算法得到小鼠骨骼关节点的粗定位,再通过回归随机森林算法进一步减小定位误差,最后通过图匹配的方法在备选点中挑选正确位置上的关节点.对49例不同身体姿态的小鼠全身三维micro-CT图像进行测试,全身关节点定位的成功率为98.27%,定位误差的中值为0.68 mm.同时验证联合使用分类与回归随机森林的必要性,并探究训练数据的数量对不同骨关节的识别效果的影响.研究为小鼠micro-CT影像中身体姿态的识别提供一种新方法,为后续的自动化图像配准、图像分割以及自动化图像测量提供重要的定位信息.
更多相关知识
- 浏览56
- 被引12
- 下载8

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文