• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

结合连续小波变换与生成对抗网络的癫痫发作预测

Epileptic Seizure Prediction Based on Continuous Wavelet Transform and Generative Adversarial Network

摘要目前半监督深度学习模型已成功用于脑电信号(EEG)的癫痫发作预测,但该模型在EEG预处理方式与半监督模型稳定性等方面还有提升空间.本研究提出一种结合连续小波变换(CWT)与基于梯度惩罚的Wasserstein生成对抗网络(WGAN-GP)的改进方法(CWT-WGAN-GP).首先对未标记的EEG信号进行CWT获得时频图,并结合特定患者的EEG数据集训练WGAN-GP模型,生成高性能的特征提取器;其次,以经过训练的WGAN-GP的判别器为特征提取器、两个全连接网络层为分类器(预测器),用少量有标记的EEG信号CWT时频图完成分类模型训练;最后,WGAN-GP的判别器与稳定的全连接网络组成半监督深度学习预测模型,用于癫痫发作预测.用CHB-MIT头皮脑电数据集中所筛选的13例患者数据,评估改进的半监督癫痫发作预测模型,并与现有半监督方法相比.该方法在灵敏度、特异性、准确率和AUC指标上分别达到82.69%,67.48%,82.08%和84.03%,将原有的性能指标分别提升14.48%,34.45%,7.87%和11.4%;CWT-WGAN-GP的预测性能与现有方法的差异具有统计学意义(P<0.05).CWT与WGAN-GP模型相结合能有效地改善半监督深度学习模型预测性能,在癫痫发作预测中发挥无监督特征提取的优化作用.

更多
广告
分类号 R318
栏目名称 论著
DOI 10.3969/j.issn.0258-8021.2023.02.005
发布时间 2023-06-13
基金项目
国家自然科学基金
  • 浏览52
  • 下载5
中国生物医学工程学报

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷