摘要复杂性分析在脑电(EEG)信号研究中有重要的意义.多元熵方法是有效的信号复杂性分析技术,但已有多元熵研究将变量设置为多通道时间序列,从多频段分析角度对大脑动力学的复杂性量化尚未得到广泛探索.对多元排列熵(mvPE)算法进行改进,本研究提出多频段排列熵(mFPE),从时频维度上对大脑的复杂性进行更为细致的衡量.研究基于模拟数据和3组真实EEG数据对算法性能进行了分析.利用1/f噪声和高斯白噪声以及MIX模型产生的模拟数据,结果发现,与mvPE相比,mFPE表现出更高的灵敏度、较短的数据长度要求以及良好的抗噪性能.将mFPE算法应用于14名帕金森患者和14名健康对照的EEG数据的分析.结果发现,mFPE能显著区分正常人和病人的脑活动,并实现78.7%的分类准确率,优于mvPE(72.8%);其次,利用14名抑郁倾向患者和14名健康对照的EEG数据也发现mFPE相较于mvPE,准确率提高了 6.6%;最后,利用32名正常人的视觉任务EEG数据,mFPE有效地揭示了不同任务刺激引起的EEG活动的改变,不同任务的分类准确率也均高于mvPE.mFPE算法为EEG信号复杂性的动态分析提供了新的视角和有效工具,有望在神经疾病诊断、脑功能研究及认知科学领域发挥重要作用.
更多相关知识
- 浏览5
- 被引0
- 下载2

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



