摘要目的:为了实现新疆高发病肝包虫病CT图像的正确分类,提出一种深度学习的肝包虫病CT图像的自动分类方法.方法:对单囊、多囊和肝囊肿CT图像使用深度学习的分类方法进行分类.首先,构建并优化ResNet-50网络模型,将肝包虫病图像分批次传入网络,然后用交叉熵作为损失函数,最后把网络结构加入对数据的批归一化处理,通过反向传播算法优化参数使损失函数最小化,最终选择训练所得的最优网络.结果:各类别的最佳分类准确率分别为单囊型78.33%、多囊型81.52%、肝囊肿型80.24%.结论:深度学习卷积神经网络的肝包虫病CT图像疾病分类方法可行、合理、且调整后的ResNet-50模型比较适合肝包虫病图像的分类,有望通过深度学习方法对肝包虫病提供辅助诊断及决策支持.
更多相关知识
- 浏览164
- 被引4
- 下载134

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文