• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于深度学习的肝包虫疾病图像分类

Study on Image Classification of Hepatic Hydatid Disease Based on Deep Learning

摘要目的:为了实现新疆高发病肝包虫病CT图像的正确分类,提出一种深度学习的肝包虫病CT图像的自动分类方法.方法:对单囊、多囊和肝囊肿CT图像使用深度学习的分类方法进行分类.首先,构建并优化ResNet-50网络模型,将肝包虫病图像分批次传入网络,然后用交叉熵作为损失函数,最后把网络结构加入对数据的批归一化处理,通过反向传播算法优化参数使损失函数最小化,最终选择训练所得的最优网络.结果:各类别的最佳分类准确率分别为单囊型78.33%、多囊型81.52%、肝囊肿型80.24%.结论:深度学习卷积神经网络的肝包虫病CT图像疾病分类方法可行、合理、且调整后的ResNet-50模型比较适合肝包虫病图像的分类,有望通过深度学习方法对肝包虫病提供辅助诊断及决策支持.

更多
广告
  • 浏览164
  • 下载134
中国数字医学

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷