Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation
摘要Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical structure types and rich pharma-cological characteristics could be ideal sources for screening multi-target antineoplastic drugs.In this paper,50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database,and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naive Bayesian and recursive partitioning algorithm for the first time.Through the multi-target anti-cancer prediction system,some dominant fragments that act on multiple tumor-related targets were analyzed,which could be helpful in designing multi-target anti-cancer drugs.Anti-cancer traditional Chinese medicine(TCM)and its natural products were collected to form a TCM formula-based natural products library,and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system.As a result,alkaloids,flavonoids and terpenoids were predicted to act on multiple tumor-related targets.The predicted targets of some representative compounds were verified accord-ing to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments.In conclusion,the multi-target anti-cancer prediction system is very effective and reliable,and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs.The anti-cancer natural compounds found in this paper will lay important information for further study.
更多相关知识
- 浏览9
- 被引6
- 下载0

相似文献
- 中文期刊
- 外文期刊
- 学位论文
- 会议论文


换一批



