医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

MolP-PC:a multi-view fusion and multi-task learning framework for drug ADMET property prediction

摘要The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This re-search proposes molecular properties prediction with parallel-view and collaborative learn-ing(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incor-porating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechan-ism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular in-formation and enhancing model generalization.A case study examining the anticancer com-pound Oroxylin A demonstrates MolP-PC's effective generalization in predicting key pharma-cokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distri-bution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development.

更多
广告
作者 Sishu Li [1] Jing Fan [1] Haiyang He [1] Ruifeng Zhou [1] Jun Liao [1] 学术成果认领
作者单位 School of Science,China Pharmaceutical University,Nanjing 211198,China [1]
栏目名称
DOI 10.1016/S1875-5364(25)60945-9
发布时间 2025-12-05(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览0
  • 下载0
中国天然药物

中国天然药物

2025年23卷11期

1293-1300页

SCIMEDLINEISTICCSCDBP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷