医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

Advances in small molecule representations and AI-driven drug research:bridging the gap between theory and application

摘要Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify ef-fective drug precursors while optimizing costs and accelerating development processes.Digit-al molecular representation plays a crucial role in achieving this objective by making mo-lecules machine-readable,thereby enhancing the accuracy of molecular prediction tasks and facilitating evidence-based decision making.This study presents a comprehensive review of small molecular representations and AI-driven drug discovery downstream tasks utilizing these representations.The research methodology begins with the compilation of small mo-lecule databases,followed by an analysis of fundamental molecular representations and the models that learn these representations from initial forms,capturing patterns and salient fea-tures across extensive chemical spaces.The study then examines various drug discovery downstream tasks,including drug-target interaction(DTI)prediction,drug-target affinity(DTA)prediction,drug property(DP)prediction,and drug generation,all based on learned representations.The analysis concludes by highlighting challenges and opportunities associ-ated with machine learning(ML)methods for molecular representation and improving down-stream task performance.Additionally,the representation of small molecules and AI-based downstream tasks demonstrates significant potential in identifying traditional Chinese medi-cine(TCM)medicinal substances and facilitating TCM target discovery.

更多
广告
作者 Junxi Liu [1] Shan Chang [2] Qingtian Deng [3] Yulian Ding [4] Yi Pan [5] 学术成果认领
作者单位 Shenzhen University of Advanced Technology,Southern University of Science and Technology,Shenzhen 518055,China;Computer Science and Control Engineering,Shenzhen University of Advanced Technology,Shenzhen 518107,China [1] Institute of Bioinformatics and Medical Engineering,Jiangsu University of Technology,Changzhou 213001,China [2] Computer Science and Control Engineering,Shenzhen University of Advanced Technology,Shenzhen 518107,China [3] Central for High Performance Computing,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China [4] Computer Science and Control Engineering,Shenzhen University of Advanced Technology,Shenzhen 518107,China;Shenzhen Key Laboratory of Intelligent Bioinformatics,Shenzhen Institute of Advanced Technology,Shenzhen 518055,China [5]
栏目名称
DOI 10.1016/S1875-5364(25)60946-0
发布时间 2025-12-05(万方平台首次上网日期,不代表论文的发表时间)
提交
  • 浏览0
  • 下载0
中国天然药物

中国天然药物

2025年23卷11期

1391-1408页

SCIMEDLINEISTICCSCDBP

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷