• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献>>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

双重字典学习与自适应PCNN相结合的医学图像融合

Medical image fusion using double dictionary learning and adaptive PCNN

摘要目的 针对基于稀疏编码的医学图像融合方法存在的细节保存能力不足的问题,提出了一种基于卷积稀疏表示双重字典学习与自适应脉冲耦合神经网络(PCNN)的多模态医学图像融合方法.方法 首先通过已配准的训练图像去学习卷积稀疏与卷积低秩子字典,在两个字典下使用交替方向乘子法(ADMM)求得其卷积稀疏表示系数与卷积低秩表示系数,通过与对应的字典重构得到卷积稀疏与卷积低秩分量;然后利用改进的的拉普拉斯能量和(NSML)以及空间频率和(NMSF)去激励PCNN分别对卷积稀疏与卷积低秩分量进行融合;最后将融合后的卷积稀疏与卷积低秩分量进行组合得到最终的融合图像.结果 对灰度图像与彩色图像进行实验仿真并与其他融合方法进行比较,实验结果表明,所提出的融合方法在客观评估和视觉质量方面明显优于对比的6种方法,在4种指标上都有最优的表现;与6种多模态图像融合方法相比,3组实验平均标准差分别提高了7%、10%、5.2%;平均互信息分别提高了33.4%、10.9%、11.3%;平均空间频率分别提高了8.2%、9.6%、5.6%;平均边缘评价因子分别提高了16.9%、20.7%、21.6%.结论 与其他稀疏表示方法相比,有效提高了多模态医学图像融合的质量,更好地保留了源图像的细节信息,使融合图像的信息更加丰富,符合人眼的视觉特性,有效地辅助医生进行疾病诊断.

更多
广告
  • 浏览1
  • 下载0
中国图象图形学报

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷