医学文献 >>
  • 检索发现
  • 增强检索
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
默认
×
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

二分类数据缺失多重填补分析及应用

The Multiple Imputation and Application in Binary Longitudinal Missing Data

摘要目的 阐明四种填补方法(multiple imputation,MI)的基本原理,实例介绍纵向研究二分类缺失数据多种填补方法的应用.方法 对比分析简单填补、分层填补、考虑个体差异的填补及考虑个体、抽样的多重填补等四种填补方法;模拟证实几种OR取值的敏感性分析.结果 进行大样本(N=10000)模拟研究表明:简单多重填补分析会降低检验效能,不能客观反应两样本的差异;考虑先前信息的分层多重填补会扩大Ⅰ型错误;若只考虑个体变异,仅模拟一个数据集,所得结论不稳定;在考虑个体、抽样和填补差异后模拟的多重填补数据集,当OR≈2时,所得统计量基本接近真值;实例验证,经高血压知晓干预后,尚不能认为两区的吸烟率有差别.结论 不考虑前次观察数据以及OR值的影响,一味地把缺失值当作该事件发生处理,会加大Ⅰ型错误;只有综合考虑个体、抽样和填补差异,多重填补数据集的估计结果才更具稳健性.

更多
广告
  • 浏览244
  • 下载77
中国卫生统计

中国卫生统计

2014年31卷3期

370-373页

ISTICPKUCSCD

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

法律状态公告日 法律状态 法律状态信息

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学小程序
new医文AI 翻译 充值 订阅 收藏 移动端

官方微信

万方医学小程序

使用
帮助
Alternate Text
调查问卷